Primal-Dual Decomposition by Operator Splitting and Applications to Image Deblurring
نویسندگان
چکیده
We present primal-dual decomposition algorithms for convex optimization problems with cost functions f(x) + g(Ax), where f and g have inexpensive proximal operators and A can be decomposed as a sum of two structured matrices. The methods are based on the Douglas–Rachford splitting algorithm applied to various splittings of the primal-dual optimality conditions. We discuss applications to image deblurring problems with nonquadratic data fidelity terms, different types of convex regularization, and simple convex constraints. In these applications, the primal-dual splitting approach allows us to handle general boundary conditions for the blurring operator. Numerical results indicate that the primal-dual splitting methods compare favorably with the alternating direction method of multipliers, the Douglas–Rachford algorithm applied to a reformulated primal problem, and the Chambolle–Pock primal-dual algorithm.
منابع مشابه
A Primal-dual Three-operator Splitting Scheme
In this paper, we propose a new primal-dual algorithm for minimizing f(x) + g(x) + h(Ax), where f , g, and h are convex functions, f is differentiable with a Lipschitz continuous gradient, and A is a bounded linear operator. It has some famous primal-dual algorithms for minimizing the sum of two functions as special cases. For example, it reduces to the Chambolle-Pock algorithm when f = 0 and a...
متن کاملA Douglas-Rachford Type Primal-Dual Method for Solving Inclusions with Mixtures of Composite and Parallel-Sum Type Monotone Operators
In this paper we propose two different primal-dual splitting algorithms for solving inclusions involving mixtures of composite and parallel-sum type monotone operators which rely on an inexact Douglas-Rachford splitting method, however applied in different underlying Hilbert spaces. Most importantly, the algorithms allow to process the bounded linear operators and the set-valued operators occur...
متن کاملA primal-dual splitting algorithm for finding zeros of sums of maximally monotone operators
We consider the primal problem of finding the zeros of the sum of a maximally monotone operator with the composition of another maximally monotone operator with a linear continuous operator and a corresponding dual problem formulated by means of the inverse operators. A primal-dual splitting algorithm which simultaneously solves the two problems in finite-dimensional spaces is presented. The sc...
متن کاملA primal-dual active-set algorithm for bilaterally constrained total variation deblurring and piecewise constant Mumford-Shah segmentation problems
In this paper, we propose a fast primal-dual algorithm for solving bilaterally constrained total variation minimization problems which subsume the bilaterally constrained total variation image deblurring model and the two-phase piecewise constant Mumford-Shah image segmentation model. The presence of the bilateral constraints makes the optimality conditions of the primal-dual problem semi-smoot...
متن کاملA Primal-Dual Splitting Algorithm for Finding Zeros of Sums of Maximal Monotone Operators
We consider the primal problem of finding the zeros of the sum of a maximal monotone operator and the composition of another maximal monotone operator with a linear continuous operator. By formulating its Attouch-Théra-type dual inclusion problem, a primal-dual splitting algorithm which simultaneously solves the two problems in finitedimensional spaces is presented. The proposed scheme uses at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 7 شماره
صفحات -
تاریخ انتشار 2014